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a b s t r a c t

A non-linear controlled dynamical system that describes the dynamics of a broad class of non-linear
mechanical and electromechanical systems (in particular, electromechanical robot manipulators) is con-
sidered. It is proposed that the real parameter vector of a non-linear controlled dynamical system belongs
to an assigned (admissible) constrained closed set and is assumed to be unknown. The programmed
motion of the non-linear controlled dynamical system and the programmed control that produces it are
assigned (constructed) by using an estimate, that is, the nominal value of the parameter vector of the
non-linear controlled dynamical system, which differs from its actual value. A procedure for synthesiz-
ing stabilizing control laws with linear feedback with respect to the state that ensure stabilization of
the programmed motions of the non-linear controlled dynamical system under parametric perturbations
is proposed. A non-singular linear transformation of the coordinates of the state space that transforms
the original non-linear controlled dynamical system in deviations (from the programmed motion and
programmed control) into a certain non-linear controlled dynamical system of special form, which is
convenient for analysing and synthesizing laws for controlling the motion of the system, is constructed.
A certain non-linear controlled dynamical system of canonical form is derived in the original non-linear
controlled dynamical system in deviations. The transformation of the coordinates of the state space con-
structed and the Lyapunov function methodology are used to synthesize stabilizing control laws with
linear feedback with respect to the state, which ensure asymptotic stability as a whole of the equilibrium
position of the non-linear controlled dynamical system of canonical form and dissipativity “in the large”
of the non-linear controlled dynamical system of special form and of the original non-linear controlled
dynamical system in deviations. In the control laws synthesized, the formulae for the elements of their
matrices of the feedback loop gains do not depend on the real parameter vector of the non-linear con-
trolled dynamical system, and they depend solely on the constants from certain estimates that hold for
all of its possible values from an assigned set. Estimates of the region of dissipativity “in the large” of the
non-linear controlled dynamical system of special form and the original non-linear controlled dynamical
system in deviations closed by the stabilizing control laws synthesized are given, and estimates for their
limit sets and regions of attraction are presented.

© 2008 Elsevier Ltd. All rights reserved.

1. Statement of the problem

Consider a non-linear controlled dynamical system in the Cauchy problem of the form

(1.1)

where z0 and z = z(t) are n-dimensional state vectors of the system at the initial and current times, u is an m-dimensional control vector, �
is a p-dimensional parameter vector of the system,

(1.2)
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�� is a bounded closed set, Rp is a p-dimensional real Euclidean space, F is an n-dimensional vector function that satisfies (under an
admissible control) the conditions for the existence and uniqueness of the solution of system (1.1) and determines the properties of a
specific control object.

Let the programmed motion be assigned (constructed) in the form

(1.3)

where

(1.4)

is an estimate, that is, the nominal value of the parameter vector � of system (1.1), which is a particular solution of the system

(1.5)

This system is identical to system (1.1) for the value of the parameter vector

(1.6)

and a certain admissible programmed control

(1.7)

and the initial condition z0 = zp(t0) = zp0. The programmed motion zp(t) will be called the unperturbed motion, and any other motion z(t) of
system (1.1) under the admissible controls will be called the perturbed (real) motion.

The quantities

(1.8)

are perturbations, i.e., deviations of the real (perturbed) motion z and the control u from their programmed values zp and up. They are
related by the differential equation in deviations

(1.9)

where

(1.10)

is a parametric perturbation, i.e., a deviation of the real parameter vector � from its nominal value �̂, and the set

(1.11)

(1.12)

where Fe(0, 0, t, 0) ≡ 0. It follows from equality (1.12) that under the controls eu = 0 and e� = 0 system (1.9)–(1.12) has the motion e ≡ 0.
The transformations (1.8) reduce the problem of studying the motions z(t) of the original non-linear controlled dynamical system (1.1)

in the neighbourhood of any isolated programmed motion zp(t) to the problem of studying the solutions e = e(t) of the original non-linear
controlled dynamical system in deviations (1.9)–(1.12) in the neighbourhood of the origin of coordinates e = 0; therefore, in the ensuing
discussion the main constraints, assumptions, and assertions will be formulated with reference to the original non-linear controlled
dynamical system in deviations (1.9)–(1.12).

For a broad class of mechanical and electromechanical systems, the structure of the original non-linear controlled dynamical system in
deviations (1.9)–(1.12) is such that

(1.13)

Here e = col(e1, . . ., er), ei and ei = col(e1, . . ., er) are n, m and mi vectors, rm = n, � = e� + �̂, and

(1.14)

where

(1.15)
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(1.16)

are partitioned matrix functions of order n × n and n × m, respectively, and P0k,k+1(k = 1, . . ., r) are m × m partitioned matrix functions, which
can be represented in the form

(1.17)

where

(1.18)

(1.19)

are symmetrical, positive definite m × m matrix functions, such that

(1.20)

(1.21)

0 < kAk < ∞, 0 < kBk < ∞ and 0 ≤ k̄Bk < ∞(k = 1, . . . , r) are certain constants; similar estimates exist for the partial derivatives of the matrix
functions Ak and Bk (k = 1, . . ., r) with respect to their arguments t and ek−1; the set is

(1.22)

Here the asterisk denotes the operation of transposition, and 0 is the zero matrix of the respective dimension.
When relations (1.12) and (1.14) are taken into account, the vector function ge(e, t, e�) can be represented in the form

(1.23)

where the gek (k = 1, . . .r) are m-vector functions. The vector function ge (1.23) satisfies the estimate

(1.24)

Here

(1.25)

(1.26)

the kgel (l = 0, 1, 2) are certain constants, |a| = (a2
1 + . . . + a2

n)
1/2

, and |A| =

⎛
⎝

n∑
i=1

m∑
j=1

a2
ij

⎞
⎠

1/2

are the moduli (Euclidean norms) of the real

vector a = col(a1, . . ., an) ∈ Rn and the real matrix A = ||aij||i=1,. . .,n;j=1,. . .,m of order n × m.
Below the control law u for the original non-linear controlled dynamical system (1.1), in which the vector function F is such that relations

(1.12) and (1.14)–(1.26) hold, has the structure of a control law with linear feedback with respect to the state z of the form

(1.27)
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where

(1.28)

is a constant m × n partitioned matrix of feedback loop gain and the �0k (k = 1, . . ., r) are m × m blocks. The control law for the original
non-linear controlled dynamical system in deviations (1.13)–(1.26) has the structure of a control law with linear feedback with respect to
the state e and is written accordingly in the form

(1.29)

We will say that for the original non-linear controlled dynamical system in deviations (1.13)–(1.26) the origin of coordinates e = 0 can be
stabilized by the control law eu (1.29), (1.28) with linear feedback with respect to the state vector e(t), if this control law ensures dissipativity
“in the large” at the origin of coordinates e = 0 of the original closed non-linear controlled dynamical system in deviations (1.13)–(1.26),
(1.29), (1.28):

(1.30)

Accordingly, for the original non-linear controlled dynamical system (1.1), (1.12), (1.14)–(1.26), the programmed motion zp(t) (1.3) can be
stabilized by the control law u (1.27), (1.28) with linear feedback with respect to the state vector z(t) if this control law ensures dissipativity
“in the large” of the programmed motion zp(t) (1.3) of the closed original non-linear controlled dynamical system (1.1), (1.12), (1.14)–(1.26),
(1.27), (1.28):

(1.31)

according to the definition given below.

Definition 1. (Ref. 1, p. 126). The set �0 is called a region of attraction of system (1.30) if

1) for any solution e(t) a time t0 is found such that e(t0) ∈ �0;
2) the set �0 is invariant, i.e., it follows from e(t0) ∈ �0 that e(t; e(t0), t0) ∈ �0 at all t ≥ t0.

Definition 2. (Ref. 1, p. 126). System (1.30) is called a dissipative system if a bounded closed region of attraction �0 exists in the n-
dimensional space {e}.

Definition 3. System (1.30) will be called a system that is dissipative in the large if each trajectory e(t; e0, t0) that emerges from a certain
bounded closed set �0 ⊂ Rn (e0 ∈ �0) enters a certain closed neighbourhood �1 ⊂ �0 of the origin of coordinates e = 0 ∈ �1 at a sufficiently
long time t = t* ≥ t0 and does not leave it afterwards (i.e., at t ≥ t*). We will call such a neighbourhood �1 the limit set of the dissipative
system.

Otherwise, for each solution e(t; e0, t0) (e0 ∈ �0 ⊂ Rn) there is a time t* = t0 + T(t0, e0) ≥ t0, after which the solution sinks everywhere into
the fixed sphere �1 = {e ∈ Rn: |e| ≤ R0}⊂ �0, i.e.,

|e(t; t0, e0)| < R0 at t∗ ≤ t < ∞
We next formulate the stabilizability criteria of the origin of coordinates e = 0 for the original non-linear controlled dynamical system

in deviations (1.13)–(1.26) with the control law eu (1.29), (1.28) with linear feedback with respect to the state e (and the programmed
motion zp(t) (1.3) for the original non-linear controlled dynamical system (1.1), (1.12), (1.14)–(1.26) with the control law u (1.27), (1.28)
with linear feedback with respect to z, respectively). Estimates of the regions of dissipativity “in the large” of the closed original non-linear
controlled dynamical system in deviations (1.13)–(1.26), (1.29), (1.28), i.e., system (1.30) (and of the closed original non-linear controlled
dynamical system (1.1), (1.12), (1.14)–(1.26), i.e., system (1.31), respectively) are given, and estimates are presented for its limit set and
region of attraction.

Similarly stated stabilization problems of controlled dynamical systems under parametric perturbations were previously considered.2–8

2. Reductions of the original non-linear controlled dynamical system in deviations to a non-linear controlled dynamical
system of special form

The procedure proposed below for the parametric synthesis of a stabilizing control law with linear feedback with respect to the state
of the non-linear controlled dynamical system in deviations (1.13)–(1.26) and the analysis of the behaviour of the solutions in a closed
system involves reducing this system to a certain non-linear controlled dynamical system of special form, which is more convenient for
examining these questions.

For this purpose, in the original non-linear controlled dynamical system in deviations (1.13)–(1.26) we perform a non-singular linear
transformation of the coordinates of the state space of the form

(2.1)

Here

(2.2)
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and exk = col(exk1, . . ., exkm) are n- and m-dimensional vectors, and S and R are non-singular constant lower triangular n × n partitioned
matrices of the form

(2.3)

where Im is an m × m identity matrix

(2.4)

the Sk+1, k (k = 1, . . ., r − 1) are m × m blocks, whose analytic form is indicated below in Section 4 (in Lemma 1),

(2.5)

Then the original non-linear controlled dynamical system in deviations (1.13)–(1.26) is transformed into a non-linear controlled dynam-
ical system of special form

(2.6)

Here

(2.7)

Fe is the vector function (1.14)–(1.26), and

(2.8)

is an n × n partitioned matrix function, and its m × m blocks have the form

(2.9)

ek
x = col(ex1, . . . , exk), exk = col(exkl, . . . exkm). Here and everywhere below

(2.10)
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(�1(ex1) = ex1 = e1, �k(ex,k−1,exk) = −Sk, k−1ex, k−1 + Imexk = ek, k = 2, . . ., r) is an mk-dimensional vector function, where Hk = ||Ikm, 0|| is a constant
partitioned matrix of order (km) × n, and everywhere

(2.11)

is an m × m block. When (1.16), (2.3) and (2.4) are taken into account, Q becomes a partitioned matrix function of the form

(2.12)

(2.13)

is an n-vector function, for which the estimate

(2.14)

where

(2.15)

(2.16)

and kgexj, kgej (j = 0, 1, 2) are certain constants, holds when (1.23)–(1.26) and (2.1)–(2.5) are taken into account.
Note that since the matrix functions P0 (1.15), (1.17)–(1.22) and Q0 (1.16) have canonical forms in the original non-linear controlled

dynamical system in deviations (1.13)–(1.26), it is possible to construct a non-singular linear transformation of the coordinates of the state
space (2.1)–(2.4) that transforms this system into the non-linear controlled dynamical system of special form (2.6)–(2.16).

3. An auxiliary lemma regarding the dissipativity “in the large” of a non-linear dynamical system

Let us consider the non-linear dynamical system

(3.1)

where e0 = e(t0) = e(t0; e0, t0) and e = e(t) = e(t; e0, t0) are n-dimensional state vectors of the system at the initial and current times, and f and
g are continuous n-dimensional vector functions, for which f(0, t) 0 and

(3.2)

It is assumed that for system (3.1), (3.2) the solution of the Cauchy problem exists and is unique.
Lyapunov function methodology enables us to find effective estimates of the dimensions of the limit set and the region of attraction

(Ref. 1, Ref. 9, pp. 29–60, Ref. 10, pp. 289–293 and Ref. 11) of the dissipative system.
Thus, following this methodology (Ref. 11, p. 150), we will assume that v(e, t) is a real, continuously differentiable positive definite scalar

function (a Lyapunov function), v(e, t) = 0, and the regions

(3.3)

(3.4)

(with a centre at the origin of coordinates e = 0) are such that

(3.5)

and the function v̇(e, t) along the trajectory of system (3.1), (3.2) satisfies the estimate

(where w0(e) is a positive-definite scalar function and w0(e) = 0 in the layer

(3.6)

Then all the trajectories of system (3.1), (3.2) that begin at t = t0 in the region �D (e(t0) ∈ �D) enter the region �1 at a certain sufficiently
long time t = t* (in the general case, the value of t* is different for different trajectories) and do not leave this region afterwards (i.e., for all
t ≥ t*), i.e.,

(3.7)

In such a case we will say (Ref. 11, p. 151) that system (3.1), (3.2) is dissipative in the large and that the regions �1 (3.4), (3.5) and �0
(3.3) serve as estimates of the limit set and the region of attraction of system (3.1), (3.2).



Yu.K. Zotov / Journal of Applied Mathematics and Mechanics 72 (2008) 391–409 397

Auxiliary lemma. Suppose a real scalar function v v(e, t) exists, which is continuously differentiable with respect to its arguments, except for
the argument e = 0, and let there be the real numbers �vi > 0 (i = 1, 2, 3), �0 > 0 and 0 < �0 < 1 such that

1) �v1|e| ≤ v(e, t) ≤ �v2|e|, ∀e ∈ Rn, t ≥ t0, v(0, t) = 0

2)
∣∣ ∂v

∂e

∣∣ ≤ �v3,
∣∣ ∂v

∂e

∣∣ /= 0, |e| /= 0

3) in estimate (3.2) for the vector function g(e, t), the coefficients kgj (j = 0, 1, 2) are such that

(3.8)

4) by virtue of the system

(3.9)

the derivative of the function v(e(t), t), along the non-trivial solution e(t) = e(t; e0, t0) of this system satisfies the estimate

(3.10)

Then,

1) system (3.1), (3.2), (3.8) is dissipative “in the large”, and the regions

(3.11)

(3.12)

where the real numbers are given by the formulae

(3.13)

are estimates of the region of attraction �0 (3.3) and the limit set �1 (3.4), (3.5) of this system, respectively;
2) in the region

(3.14)

where �0 and �1 are the sets (3.11) and (3.12), respectively, and the solution e(t) of system (3.1), (3.2), (3.8) satisfies the estimate

(3.15)

where t* is a certain time, which is such that

(3.16)

Proof. Taking into account conditions 1–4 of the lemma, we calculate the derivative of the function v v(e(t), t) with respect to the time
t by virtue of system (3.1), (3.2), (3.8). We obtain

(3.17)

where a, b, c, �v0 and �v1 are the real numbers (3.13), b2 − 4ac > 0 when the last relation in (3.8) is taken into account, �D is the set (3.14),
(3.11)–(3.13), and t* ≥ t0 is a certain time such that e(t*; e0, t0) ∈ �1.

It follows from estimate (3.17) and condition 1 of the lemma that the inequalities

hold, where

Consequently, the assertions of the lemma hold. �
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4. Criteria for the linear stabilizability of a non-linear controlled dynamical system

1◦. We will first examine the behaviour of the solution e(t) of the non-linear controlled dynamical system

(4.1)

(where ex is the state vector (2.2) of the system and P and Q are the matrix functions (2.8)–(2.11) and (2.12)), which is closed by the control
law eu (1.29), (1.28). When relations (2.1)–(2.5) are taken into account, this control law can be represented in the form

(4.2)

where �̄0 is a constant m × n matrix of the form

(4.3)

which consists of the m × m blocks

(4.4)

and an equation of the transients (in the closed system indicated) of the form

(4.5)

Here

(4.6)

is an n × n matrix function that consists of the m × m blocks �kl (k, l = 1, . . .r); P and Q are the matrix functions (2.8)–(2.11) and (2.12); when
relations (2.12) and (1.16) are taken into account,

(4.7)

is an m × m partitioned matrix function.

Lemma 1. Let the following conditions hold:

1) the matrix �̄0 (4.3), (4.4) has the form

(4.8)

2) the Sk+1, k (k = 1, . . .r) are non-singular constant m × m blocks, which can be represented in the form

(4.9)

where the �S, k+1, k (k = 1, . . .r) are certain real numbers, which satisfy the inequalities

(4.10)

(4.11)
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the �i(A1(t, �)), �i(Ak(�k−1(ek−1
x ) and t, �)), �i(Bk(t, �))(i = 1, . . . , m; k = 1, . . . , r) are eigenvalues of the matrix functions Ak (1.18), (1.20) and

Bk (1.19), (1.21) (k = 1, . . ., r), respectively, the set is

the 	̄Gkk and �Gkl are non-negative real numbers:

(4.12)

Then the equilibrium position ex = 0 of the non-linear controlled dynamical system (4.1), (2.2), (2.8)–(2.12) closed by the control law eu

(4.2)–(4.4), (4.8)–(4.12) with linear feedback with respect to the state ex is stabilizable, so that the following assertions hold:

1) the equilibrium position ex = 0 of the equation of the transients (in the closed system indicated) (4.5)–(4.12), (1.17)–(1.22) is asymptotically
Lyapunov stable as a whole;

2) the solution ex(t) of this system satisfies the estimate

(4.13)

where 	x0 and �0 are positive real numbers:

(4.14)
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Proof. We first note that in the equation of the transients (4.5)–(4.7) � is the partitioned matrix function (4.6), in which the matrix
functions P, Q and �̄0 have the forms (2.8)–(2.11), (2.12) and (4.8), respectively, and the matrix function Px1 (4.7) has the form

(4.15)

where

(4.16)

is an m × m block, �k ≡ �k(ek
x) is the mk-dimensional vector function (2.10) and, according to (4.8),

Now, let us consider the Lyapunov function

(4.17)

where

(4.18)

is a block-diagonal, symmetric, positive-definite matrix function, the Bk (k = 1, . . ., r) are m × m blocks of form (1.19), (1.21), and stipulate
that it satisfies the estimate

(4.19)

where �(B) > 0 and �̄(B) > 0 are constants defined by the second and third formulae in (4.14).
We calculate the derivative of the function V(ex(t), t, �) (4.17)–(4.19) with respect to the time t by virtue of the equation of the transients

(4.5)–(4.12), (4.15), (4.16), (1.17)–(1.22), taking relations (4.8), into account (from the first condition of the lemma) for the matrix �̄0 and
relations (4.9)–(4.12) (from the second condition of the lemma) for the blocks Sk+1, k (k = 1, . . ., r). We finally obtain

(4.20)

Here

(4.21)

is a quadratic form, where

(4.22)

is a symmetric matrix function of order n × n, in which

(4.23)

is an m × m partitioned matrix function, where the Bk (k = 1, . . ., r) are the m × m blocks (1.19), (1.21) and the �kl (k, l = 1, . . ., r) are the m × m
partitioned matrices � (4.6).

We will estimate the quadratic form W(ex, t, �) (4.21)–(4.23).
For this purpose, we first estimate the quadratic forms

(4.24)

(4.25)

Taking into account relations (4.24), (4.25), (4.16), (4.12) and (4.14) and using the estimates
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we obtain

(4.26)

where �Gkk > 0 (k, 1, . . . r) are real numbers defined by the last r formulae in (4.14).
Next, using (4.20)–(4.26) and the inequalities

where the �Gkl > 0 are real numbers given by (4.12), we estimate the quadratic form W(ex, t, �) (4.21)–(4.23). We obtain

(4.27)

where �exk > 0 (k, 1, . . . r), �̄0 > 0 and �0 > 0 are real numbers from (4.14) and (4.9)–(4.12).
Relations (4.20) and (4.27) lead to the estimate

(4.28)

from which we find

Hence, using relations (4.17)–(4.19) again, we obtain

where 	x0 > 0 is a real number given by the first formula in (4.14). Therefore, the equilibrium position ex = 0 of the equation of the transients,
i.e., system (4.5)–(4.12), (1.17)–(1.22) is asymptotically Lyapunov stable as a whole with an estimate for the solution ex(t) of the form

(4.29)

i.e., the equilibrium position eu = 0 of the non-linear controlled dynamical system (4.1), (2.8)–(2.12), (4.3) closed by the control law eu

(4.2)–(4.4), (4.8)–(4.12) with linear feedback with respect to the state ex is stabilizable.

2◦. We will examine the behaviour of the solution ex(t) of the non-linear controlled dynamical system of special form (2.6)–(2.16)

(4.30)

(where ex is the state vector (2.2) of the system, P and Q are the matrix functions (2.8)–(2.11) and (2.12), and gex is the vector function
(2.13)–(2.16)), which is closed by the control law eu (1.29), (1.28) with linear feedback with respect to the state ex. When relations (2.1)–(2.5)
are taken into account, this control law can be represented in the form (4.2), i.e.,

(4.31)
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where �̄0 is the constant matrix (4.3), (4.4), and the equation of the transiens (in the closed system indicated) of the form

(4.32)

Here � denotes the matrix functions (4.6), (2.8)–(2.11) and (4.7), and gex is the vector function (2.13)–(2.16).

Lemma 2. Let the conditions of Lemma 1 hold, and let the coefficients kgexj (j = 0, 1, 2) (2.16) in estimate (2.14) for the vector function gex (2.13)
satisfy the inequalities

(4.33)

where the kgej (j = 0, 1, 2) and �0 are constants that can be determined from relations (1.24)–(1.26) and (4.14), (4.9)–(4.12).

Then the non-linear controlled dynamical system of special form (4.30), (2.2), (2.8)–(2.16), closed by the control law eu (4.31), (4.3),
(4.4), (4.8)–(4.12) with linear feedback with respect to the state ex, is stabilizable. Thus, the following assertions hold for the solution ex(t)
of the equation of the transients (in the closed non-linear controlled dynamical system indicated), i.e., system (4.32), (4.6), (2.8)–(2.11),
(4.7), (2.13)–(2.16), (4.33):

1) system (4.32), (4.6), (2.8)–(2.11), (4.7), (2.13)–(2.16), 4.33) is dissipative “in the large”, where the regions

(4.34)

(4.35)

where B is the matrix function (4.18), (4.19) and the real numbers

(4.36)

are estimates of the region of attraction and the limit set of this system, respectively;
2) in the region

(4.37)

where �ex0 and �ex1 are the sets (4.34) and (4.35), respectively, the solution ex(t) of system (4.32), (4.6), (2.8)–(2.11), (4.7), (2.13)–(2.16),
(4.33) satisfies the estimate

(4.38)

where 	x0 > 0 is a positive number defined by the first formula in (4.14), and t* is a certain time such that

(4.39)

Proof. We will show that the conditions of the auxiliary lemma hold for system (4.32), (4.6), (2.8)–(2.11), (4.7), (2.13)–(2.16), (4.33) written
in the form of the system

(4.40)

where the vector functions are defined by the formulae

(4.41)

(4.42)

and gex(ex, t, e�) is a vector function of the form (2.13)–(2.16), (4.33).

Consider the Lyapunov function

(4.43)
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where V(ex, t, e�) is the function (4.17)–(4.19). The function �(ex, t, e�) (4.43) satisfies conditions 1 and 2 of the auxiliary lemma, where

(4.44)

�(B) > 0 and �̄(B) > 0 are constants defined by the second and third formulae in (4.14). When relations (4.44) and (4.33) are taken into
account, the coefficients kgexj (j = 0, 1, 2) (2.16) in estimate (2.14) for the vector function gex (2.13) satisfy estimates (3.8), i.e.,

from condition 3 of the auxiliary lemma, where

kgej (j = 0, 1 2) and �0 > 0 are constants that can be determined from (1.24)–(1.26) and (4.14), (4.9)–(4.12) and the ��i (i = 1, 2, 3) are constants
defined by (4.44).

Since the conditions of Lemma 1 are satisfied, then, according to this lemma, the derivative of the function V(ex(t), t, �) (4.17)–(4.19)
with respect to the time t by virtue of system (4.5)–(4.7), (2.8)–(2.11) written in the form of the system

(4.45)

where f is the vector function (4.41), satisfies relations (4.2)–(4.28), i.e.,

(4.46)

where W(ex(t), t, �) is the function (4.21)–(4.23) and �0 is a positive number defined in relations (4.14), (4.10)–(4.12).
Taking into account estimate (4.46), we calculate the derivative of the function v(ex(t), t, �) (4.43), (4.17)–(4.19) with respect to the time

t by virtue of system (4.45). We obtain

(4.47)

and the fourth condition of the auxiliary lemma is therefore satisfied.
Thus, the equation of the transients (4.32), (4.6), (2.8)–(2.11), (4.7), (2.13)–(2.16), (4.33) satisfies the conditions of the auxiliary lemma.

Therefore, the assertions of this lemma, which are identical to the assertions of Lemma 2 for system (4.32), (4.6), (2.8)–(2.11), (4.7),
(2.13)–(2.16), (4.33) written in the form of system (4.40)–(4.42), (2.13)–(2.16), (4.33) when relations (4.40)–(4.42) are taken into account,
hold.

3◦. Now we will examine the behaviour of the solution e(t) of the non-linear controlled dynamical system of canonical form

(4.48)

(where P0 and Q0 are the matrix functions (1.15) and (1.16)), which is closed by the control law eu (1.29), (1.28), and the equation of the
transients (in the closed system indicated)

(4.49)

Here

(4.50)

is an n × n matrix function, where P0 is the n × n matrix function (1.15) and

(4.51)

is an n × n partitioned matrix function.

Theorem 1. Let the matrix �0 (1.28) of order m × n have the m × m blocks �0k (k = 1, . . ., r), which can be represented in the form

(4.52)

and let the second condition of Lemma 1 hold.
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Then the non-linear controlled dynamical system of canonical form (4.48), (1.14), (1.16) closed by the control law eu (1.29), (1.28), (4.52),
(4.9)–(4.12) with linear feedback with respect to the state e is stabilizable, so that for the solution e(t) of the equation of the transient
processes (in the closed non-linear controlled dynamical system indicated), i.e., system (4.49)–(4.52), (1.28), (4.9)–(4.12), assertions hold
the following:

1) the equilibrium position e = 0 of system (4.49)–(4.52), (1.28), (4.9)–(4.12) is asymptotically Lyapunov stable as a whole;
2) the non-trivial solution e(t) of system (4.49)–(4.52), (1.28), (4.9)–(4.12) satisfies the estimate

(4.53)

where 	0 = |R||S|	x0, 	x0 and �0 are positive numbers, defined in relations (4.14) and (4.9)–(4.12).

Proof. First, we transform the non-linear controlled dynamical system of canonical form (4.48), (1.15), (1.16) using the non-singular linear
transformation of the coordinates of the state space

of the form (2.1)–(2.5) into the non-linear controlled dynamical system (4.1), (2.8)–(2.12):

For the non-linear controlled dynamical system (4.1), (2.8)–(2.12) the control law eu (4.31) has the matrix �̄0 (4.3), (4.4).When relations
(4.52) are taken into account, this matrix has the m × m blocks

(4.54)

and the first condition of Lemma 1 consequently holds. It follows from this and from fulfilment of the second condition of Lemma 1 that
the assertions of Lemma 1 hold for this system.

It follows from the assertions of Lemma 1, the non-degeneracy of the linear replacement of variables of the form (2.1)–(2.5) and the
estimates

(4.55)

that the assertions of Theorem 1 hold for the non-linear controlled dynamical system of canonical form (4.48), (1.15), (1.16) closed by the
control law eu (1.29), (1.28), (4.52), (4.9)–(4.12) with linear feedback with respect to the state e, as well as for the solution e(t) of the equation
of the transients (in the closed non-linear controlled dynamical system indicated), i.e., system (4.48)–(4.51), (1.28), (4.52), (4.9)–(4.12).

Note that these assertions are similar to the assertions of Lemma 1 for the non-linear controlled dynamical system (4.1), (2.2), (2.8)–(2.12)
closed by the control law eu (4.2)–(4.4), (4.8)–(4.12) with linear feedback with respect to the state ex and for the equation of the transients
(4.5)–(4.12), (1.17)–(1.22) (in the closed system indicated). Theorem 1 is proved.

4◦. In conclusion, we will examine the behaviour of the solution e(t) of the original non-linear controlled dynamical system in deviations
(1.13)–(1.26)

closed by the control law eu (1.29), (1.28) with linear feedback with respect to the state e, as well as the equation of the transients (in the
closed system indicated)

(4.56)

where �e is the matrix function (4.50), (4.51) and ge is the vector function (1.23)–(1.26).

Theorem 2. Let the conditions of Theorem 1 hold, let the vector function ge (1.23) satisfy estimate (1.24)–(1.26), and in estimate (2.14), (2.15)
for the vector function gex (2.13) let the coefficients kgexj (j = 0, 1, 2) (2.16) satisfy inequalities (4.33).

Then the original non-linear controlled dynamical system in deviations (1.13)–(1.26), closed by the control law eu (1.29), (1.28), (4.52),
(4.9)–(4.12) with linear feedback with respect to the state e, is stabilizable so that for the solution e(t) of the equation of the transients
(in the closed non-linear controlled dynamical system indicated), i.e., system (4.56), (4.50), (4.51), (1.28), (4.52), (4.9)–(4.12), (1.23)–(1.26),
(4.33), assertions hold the following:

1) system (4.56), (4.50), (4.51), (1.28), (4.52), (4.9)–(4.12), (1.23)–(1.26), (4.33) is dissipative “in the large”, and the regions

(4.57)
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(4.58)

where �ex0 and �ex1 are the sets (4.34)–(4.36), are, respectively, estimates of the region of attraction and the limit set of this system;
2) in the region

(4.59)

where �e0 and �e1 are sets (4.57) and (4.58), respectively, the solution e(t) of system (4.56), (4.50), (4.51), (1.28), (4.52), (4.9)–(4.12),
(1.23)–(1.26), (4.33) satisfies the estimate

(4.60)

where 	x0 and �0 are positive numbers defined in relations (4.14), (4.9)–(4.12) and t* is a certain time such that

(4.61)

Proof. First we transform the original non-linear controlled dynamical system in deviations (1.13)–(1.26) using the non-singular linear
transformation of the coordinates of the state space (2.1)–(2.5) into the non-linear controlled dynamical system of special form (2.6)–(2.16):

In estimate (2.14), (2.15) for the vector function gex (2.13), the coefficients kgexj (j = 0, 1, 2) (2.16) satisfy inequalities (4.33).

For the non-linear controlled dynamical system of special form (2.6)–(2.16) (4.33), the control law eu (4.31) has the matrix �̄0 (4.3), (4.4).
When relations (4.52) are taken into account, this matrix consists of the m × m blocks �̄0k (k = 1, . . ., r) (4.54). It follows from this and from
fulfilment of the second condition of Lemma 1 that the conditions of Lemma 2 hold and that the assertions of Lemma 1 are consequently
valid for this system.

It follows from the assertions of Lemma 2, the non-degeneracy of the linear replacement of variables of the form (2.1)–(2.5) and estimates
(4.55) that the assertions (similar to the assertions of Lemma 2) formulated in Theorem 2 also hold for the non-linear controlled dynamical
system in deviations (1.13)–(1.26) closed by the control law eu (1.29), (1.28), (4.52), (4.9)–(4.12) with linear feedback with respect to the
state e, as well as for the solution e(t) of the equation of the transients (in the closed non-linear controlled dynamical system indicated),
i.e., system (4.56), (4.50), (4.51), (1.28), (4.52), (4.9)–(4.12), (1.13)–(1.26), (4.33). Theorem 2 is proved.

Remarks. In the control laws synthesized, viz., eu (4.2)–(4.4), (4.8)–(4.12) for the non-linear controlled dynamical system (4.1), (2.2),
(2.8)–(2.12), eu (4.31), (4.3), (4.4), (4.8)–(4.12) for the non-linear controlled dynamical system of special form (4.30), (2.9), (2.8)–(2.16) and
eu (1.29), (1.28), (4.52), (4.9)–(4.12) for the non-linear controlled dynamical system of canonical form (4.48), (1.15), (1.16), as well as eu

(1.29), (1.28), (4.52), (4.9)–(4.12) for the original non-linear controlled dynamical system in deviations (1.13)–(1.26) (which were described
above under the conditions of Lemmas 1 and 2 and Theorems 1 and 2, respectively), the corresponding formulae (4.8)–(4.12) and (4.52) for
the elements of their matrices of the feedback loop gain �̄0k (k = 1, . . ., r) and �0k (k = 1, . . ., r) do not depend explicitly on the real parameter
vector � of the non-linear controlled dynamical system, and depend only on the constants �S, k+1, k (k = 1, . . ., r) from estimates (4.10)–(4.12)
(which are reducible under the conditions of the applicable lemmas and theorems indicated), which hold for all possible values from the
assigned (admissible) set ��.

5. Appendix

For a non-linear controlled dynamical system of the electromechanical type (for example, an electromechanical robotic manipulator12),
which includes an actuating mechanism and electrical drive mechanisms based on dc motors with strong reduction gears, the dynamic
equations have the form12

(5.1)

The first equation describes the dynamics of the actuating mechanism in the form of Lagrange’s equations of the second kind, and the
second and third equations describe the dynamics of the electric drive mechanisms. Here q = col(q1, . . ., qm) is an m-dimensional vector
of the generalized coordinates q1, . . ., qm of the mechanical part, i.e., the actuating mechanism, m is the number of degrees of freedom
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(mobility) of the actuating mechanism, �0 and �̂0 are the real p0-dimensional parameter vector of the actuating mechanism and an estimate
of it, i.e., its nominal value,

(5.2)

where ��0 is a bounded closed set, and A0(q, �0) is a continuously differentiable, symmetric, positive-definite m × m matrix function of the
kinetic energy T = q̇∗A0(q, �0)q̇/2 of the actuating mechanism. Here

(5.3)

where kA0 is a certain constant. A similar estimate holds for the partial derivative of the matrix function A0 with respect to the argument q:

(5.4)

(5.5)

(5.6)

Q	 is an m-dimensional vector of the potential forces acting on the actuating mechanism, 	 = 	(q, �0) is the potential energy of the actuating
mechanism, Q	i(q, �0) (i = 1, . . ., m) are continuously differentiable functions, Qc is an m-dimensional vector of generalized resistance forces
(torques) acting on the degrees of mobility of the actuating mechanism, 
c(q, t, �0) is a continuously differentiable m × m matrix function, Ia
is an m-dimensional vector of the currents in the armature circuits of the dc motors, u = col(u1, . . ., um) is an m-dimensional control vector,
whose components control the voltages supplied to the armature circuits of the dc motors, Qu = col(Qu1, . . ., Qum) is an m-dimensional
vector of the generalized forces (torques) that are applied to the degrees of mobility of the actuating mechanism, J, k0, km, L, R and ke are
diagonal matrices of the electromechanical parameters of the dc motors, which are positive real quantities, ip and 
p are diagonal matrices
of the gear ratios and efficiencies of the reduction gears, and � = ipq is an m-dimensional vector of the angles of rotation the motor shafts.

We use

(5.7)

to denote the (p1 = 8m)-dimensional parameter vector of the electric drive mechanisms and an estimate of it, i.e., its nominal value, whose
components are diagonal elements of the matrices J, k0, km, L, R, ke, ip, 
p and their estimates Ĵ, k̂0, k̂M, L̂, R̂, k̂e, îp, 
̂p (��1 is a bounded
closed set), and we use

(5.8)

to denote the (p = p0 + p1)-dimensional parameter vector of the non-linear controlled dynamical system (5.1)–(5.7) and an estimate of it,
i.e., its nominal value.

The dynamic equations of a non-linear controlled dynamical system of form (5.1)–(5.8)

(5.9)
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which are written in the deviations e and eu (1.8) from their programmed values zp = zp(t) ≡ zp(t, �̂) and up = up(t) ≡ up(t, �̂) (where
kzip ∈ [0, < ∞) (i = 2, 3) are certain constants), can be represented in the form of system (1.13)–(1.26), where n = 3m, r = 3, and

(5.10)

Here the ei = col(e1,. . ., ei) (i = 1, 2, 3) are mi vectors, and

(5.11)

where k̄�A ∈ [0, < ∞) is a certain constant; similar estimates hold for the partial derivatives of the matrix function �Ā with respect to its
arguments e1 and t; A2(e1, t, �) is a symmetric positive definite matrix function;

(5.12)

(5.13)

(5.14)

where k�Q	 ≥ 0, k�Qc1 ≥ 0 and k�Qc2 > 0 are certain constants.
It follows from (5.1)–(5.4) that the following estimates hold

(5.15)

(5.16)

where k�bj ≥ 0, k�b22 ≥ 0, k�b0j ≥ 0 and k�b022 > 0 (j = 1, 2) are certain constants.
It follows from relations (5.1)–(5.16) that relations (1.18)–(1.26) hold. Therefore, the non-linear controlled dynamical system (1.9),

(5.1)–(5.16) is a non-linear controlled dynamical system of the form (1.13)–(1.26).

Example. As a an example of a non-linear controlled dynamical system, we will consider an electromechanical robotic manipulator with
an actuating mechanism, i.e., a spatial manipulator with three degrees of freedom, whose kinematic diagram is shown in the figure. Here
the qi (i = 1, 2, 3) are generalized coordinates of the actuating mechanism of the manipulator, i.e., the angles formed by the corresponding
links, which are degrees of mobility of the actuating mechanism with the axes of the stationary Cartesian system of coordinates Oxyz, li
and mi are the length of the ith link and its mass, r1 is the radius of the shaft (a cylinder), i.e., the first link of the actuating mechanism, r2
and r3 are the distances from the centres of gravity of the second and third links (taking into account the mass m of the load in its gripper)
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to the axis of rotation the respective link, Qui is the load torque on the ith link of the actuating mechanism, and m = 3 is the number of
degrees of freedom (mobility) of the actuating mechanism.

In the dynamic equation (5.1), (5.8) of the actuating mechanism of such an electromechanical robotic manipulator, the symmetric,
positive-definite 3 × 3 matrix function A0(q, �0) of the kinetic energy of the actuating mechanism has the elements

(5.17)

Here

(5.18)

(J01 is the moment of inertia of the first link of the actuating mechanism).
We write an expression for the potential energy of the actuating mechanism

(5.19)

where g̃ is the acceleration due to gravity, and an expression for the three-dimensional vector of the resistive torques acting on the degrees
of mobility of the actuating mechanism

(5.20)

where kBTi (i = 1, 2, 3) are damping (viscous friction) coefficients.
We will show that the non-linear controlled dynamical system (1.9), (5.1)–(5.8), (5.17)–(5.20), (5.9), (5.10), which describes the dynamics

of the electromechanical robotic manipulator (5.1)–(5.8), (5.17)–(5.20) in deviations is a non-linear controlled dynamical system of the
form (1.13)–(1.26).

In fact, it can be concluded that estimates (5.3), (5.11) and (5.13) hold for the matrix function A0(q, �0) with elements (5.17) and for the
vector function Qc (5.20) from the dynamic equations of the actuating mechanism (5.1), (5.8), respectively.

Next, taking into account relations (5.19) and (5.5) for the potential energy of the actuating mechanism ˘(q̃, �0) and the vector function
Q˘ (ẽ1, �0), where ẽ1 = col(e12, e13), we define the vector function

(5.21)

where k0(�0) = || k01(�0), k02(�0)|| is a 3 × 2 matrix, k01(�0) = col(0, k012(�0), 0) and k02(�0) = col(0, 0, k023(�0)) are three-dimensional vectors,
k012(�0) = (m2r2 + m30l2)g̃ and k023(�0) = m30r3g̃, and the vector function

(5.22)

We will show that the vector function �Q˘ (ẽ1, t.�0) (5.21), (5.22) satisfies estimate (5.12).
Using the formula for finite increments of this vector function (Ref. 13, p. 122, Lemma 3.1), we estimate its absolute value:

(5.23)
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Here

(5.24)

It follows from relations (5.22)–(5.24) that estimate (5.12) holds for the vector function �Q˘ (ẽ1, t.�0) (5.21).
Hence it follows that relations (1.18)–(1.26) hold. Therefore, the non-linear controlled dynamical system (1.9), (5.1)–(5.8), (5.17)–(5.20),

(5.3), (5.11), (5.13), (5.21)–(5.22), which describes the dynamics of the electromechanical robotic manipulator (5.1)–(5.10), (5.17)–(5.20) in
deviations is a non-linear controlled dynamical system of the form (1.13)–(1.26).
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